Наши знания о химизме биосферы, о тех условиях, в которых появилась жизнь и почвенный покров, покоятся на очень прочном научном фундаменте. Достаточно упомянуть классическую работу академика В. И. Вернадского "Химическое строение биосферы Земли и ее окружения", написанную в 30-е годы. Современная жизнь привнесла нечто совершенно новое в познание начальных этапов эволюции планет - прямые наблюдения в космосе. Космонавтика позволила "заглянуть" в такие процессы и обстановку ранних периодов жизни Солнечной системы, отстоящих от нас на 3-4,5 миллиарда лет.
Геохимики пришли к убеждению, что все планеты земного типа, а это Луна, Меркурий, Земля, Венера и Марс, имеют одинаковый состав. Разная масса этих планет определяет различия в степени сжатия вещества в их глубинах, а также то важнейшее для жизни обстоятельство, будет ли у планеты атмосфера и какого именно состава.
Химический и минералогический состав поверхности довольно сходен. Вся поверхность Луны сложена магматическими силикатными породами, содержащими много кремния, а также продуктами их разрушения. Здесь присутствуют известные и на Земле минералы: ортоклаз, плагиоклаз, диопсид, оливин, ильменит, апатит и другие. Слоем раздробленных силикатных пород сложена поверхность Марса, а поверхность Венеры - базальтами и гранодиоритами.
Одинаковы всюду и доминирующие химические элементы. Тщательно изучен состав метеоритов - пришельцев к нам из глубин Солнечной системы. Они бывают разные по своему составу: железные, каменные и другие, но особенно интересуют ученых так называемые углистые хондриты - метеориты из темного, похожего на уголь вещества, которое содержит много органических соединений. Около 40 таких метеоритов найдено в Антарктике, в других районах Земли их разыскать труднее: кто обратит внимание на темный тусклый камешек? А среди вечных льдов он сразу бросается в глаза.
Так вот, в углистых хондритах много сложных органических соединений, в том числе и аминокислоты. Определение абсолютного возраста метеоритов показывает, что в Солнечной системе сложные органические соединения были уже по меньшей мере за миллиард лет до возникновения жизни на Земле: ведь большинство метеоритов - остатки того вещества, из которого сложены планеты. Вполне логично предположить, что эти первичные органические вещества могли послужить основой для развития жизни. Физики остроумно отметили, что окружающее нас вещество похоже на золу космического пожара, в котором оно было создано.
Мы уже говорили, что толщи первичных грунтов на древних материках издревле должны были быть заселены микробами. Но на саму "дневную" поверхность Земли организмы - а это были зеленые растения - взошли далеко не сразу.
Многие геохимики считают, что свободный кислород в очень малом количестве существовал и 4,5 миллиарда лет назад. Он - результат разложения молекул воды солнечным излучением. Но чтобы достичь уровня Пастера (0,01 процента от современной) - той концентрации, при которой дыхание микробам в 30-50 раз энергетически выгоднее брожения, микроорганизмам потребовалось 2,5 миллиарда лет "работы".
Уровень Пастера был преодолен только в позднем протерозое, не ранее одного миллиарда лет назад. Только тогда зеленые растения, еще без корней и листьев, ближайшие потомки водорослей, стали заселять сушу по побережьям океанов. Это имело колоссальные последствия для всей биосферы: масса живого вещества после заселения суши увеличилась в 800 раз, возникли почвы, образовался гигантский по разнообразию мир почвенных организмов.
Полагают, что первое время жизни на суше мешало жесткое ультрафиолетовое излучение Солнца и обитали здесь лишь низкорослые псилофиты и мелкие почвенные беспозвоночные. Но около 400 миллионов лет назад, когда количество кислорода в атмосфере достигло около 10 процентов современного, образовался и озоновый экран в атмосфере. К этому времени приурочено появление уже целых лесов из псилофитов, а также выход на сушу первых позвоночных животных.
Завоевание континентов растениями и животными вызвало образование континентальных отложений. Здесь самое значительное - появление органических отложений: угольных и торфяных толщ. В девоне возникли первые угольные месторождения, а следующий геологический период даже получил название "карбон" - так много в нем угольных отложений ("карбон" по-латыни и есть "уголь").
Нет нужды говорить, что сейчас такого не увидишь: вся мертвая органика в лесах, степях, пустынях, в мангровых зарослях по берегам морей быстро перерабатывается животными-сапрофагами и микроорганизмами. Биологи не раз высказывали предположение, что угли могли раньше образовываться только потому, что, когда растения на суше уже были и отмершие их остатки на землю падали, почвенных животных и микробов, способных питаться этой органикой, еще не существовало. Или, может быть, их было еще слишком мало?
Как и когда появились на суше животные? На этот вопрос современная палеонтология дает довольно точный ответ. Бесспорно, предки наземных животных - сначала это были беспозвоночные - обитали в морях. Первые беспозвоночные, которые могли дышать атмосферным воздухом, появились в кембрии. Правда, известны они только из морских отложений. Но ведь и так бывает: ветром или водой наземные животные или растения сносятся в воду, в моря или озера, а там они попадают в осадки.
В ордовике отдельные участки суши были уже плотно заселены низшими растениями: грибами, одноклеточными водорослями, не говоря уже о бактериях. А о беспозвоночных, которые могли ими питаться, мы знаем очень мало. Никогда нельзя с уверенностью сказать, были ли это настоящие наземные жители или же обитатели мелководных водоемов, которые лишь изредка выползали на берег.
По всей видимости, почвенная фауна материков стала формироваться в следующем периоде палеозоя - силуре, одновременно с заселением суши высшими растениями. А уже в девоне мы знаем множество чисто наземных, подстилочных и почвенных обитателей. Особенно многочисленны были микроартроподы - бескрылые насекомые, паукообразные, древнейшие многоножки. Удивительными существами той поры были многоножки-артоплевры. Их длина достигала полутора метров при толщине 10-12 сантиметров.
В карбоне на суше жили представители не менее 13 отрядов паукообразных и 12 отрядов настоящих насекомых, которые именно в это время научились летать. Как видим, к карбону суша уже давно и основательно была заселена растениями и беспозвоночными животными. Вероятно, именно обилие напочвенных беспозвоночных побудило стремиться к выходу на сушу позвоночных животных. Здесь для них уже было достаточно пищи, а врагов - никаких.
В конце девона - начале карбона первые земноводные, а именно стегоцефалы (панцирные земноводные), вышли на сушу. Здесь произошло то же явление в экологии, что ранее случалось в эволюции микроорганизмов: новые группы организмов, вселяясь в уже освоенную их предшественниками среду, не уничтожали ранее существовавшие здесь экосистемы, а только перестраивали их, удлиняя и усложняя пищевые цепи. Так произошло и с почвенной фауной: мир почвенных беспозвоночных остался неизменным и продолжал развиваться по своим законам.
В карбоне произошла и первая в наземной фауне "экологическая катастрофа": вымерла половина отрядов наземных паукообразных, а остальные измельчали. Они не смогли конкурировать с первыми наземными позвоночными, хотя те бывали иногда размером с небольшую ящерицу. Часть паукообразных, а они до тех пор были самыми крупными и сильными хищниками на суше, пала в битве с земноводными, а остальные поспешили скрыться в такие экологические ниши, куда позвоночные проникнуть не смогли.
От этого удара мир паукообразных уже не оправился: сотни миллионов лет шло бурное развитие жизни на суше, а разнообразие отрядов наземных паукообразных так и не достигло уровня начала карбона. Сейчас их 13 отрядов против 15 в карбоне.
К сожалению, очень многие почвенные беспозвоночные не имеют скелета, их остатки не сохранились в геологической летописи. Таковы столь обильные и разнообразные черви. Панцирные клещи оказались в этом отношении удачливее - их панцири мы изучаем в континентальных отложениях разного возраста. Самая древняя находка недавно сделана в США: в отложениях девонского времени обнаружили примитивнейших панцирных клещей. Панцирные клещи вполне современного облика открыл в юрских отложениях в СССР палеоботаник В. А. Красилов, а несколько позже они были найдены в южной Швеции.
Поразительно, что среди 6 известных к настоящему времени родов орибатид юры 2 - современные, успешно "проживающие" и поныне. А ведь прошло 140 миллионов лет. Такие организмы, почти не меняющиеся с течением времени, выдающийся сподвижник Ч. Дарвина Т. Гексли назвал персистентами. Почему же сохранились в почвах такие "живые ископаемые"? Вероятнее всего, из-за устойчивости, стабильности самой почвенной среды и экосистем в ней.
Труднее судить об эволюции отношений между растениями, животными, микроорганизмами и минеральной частью почвы в прошлом. Но что эти отношения изменялись - несомненно. Высшие сосудистые растения, которые начали в силуре наступать на континенты, были потомками морских водорослей и очень сильно отличались от современных. Потребовалось много времени, чтобы у растений появился слой коры, защищавший их от высыхания, прочные опорные ткани стебля для противодействия ветрам и силе тяжести. В водной среде таких забот растения не знают. Потребовались корни, чтобы доставать из почвы воду и минеральные соли, система каналов, сосудов для доставки питательных веществ всем органам и тканям. Ничего подобного у предков наземных растений, к которым относятся столь привычные нам деревья, кустарники или травы, ранее не было.
Не было корней - не было и корневых выделений, не могло быть и микоризы, и клубеньковых бактерий на корнях, и огромной массы микробов, которые питаются органическими веществами, выделяемыми корнями растений. Не было и самой ризосферы. Условием успешной эволюции высших растений была плодородная почва, а в ее образовании участвовали множество почвенных микробов, синезеленых водорослей, грибов, лишайников, беспозвоночных.
Наземные растения, отмирая, оставляли на поверхности почвы скопища стеблей, состоящих из клетчатки и лигнина. Древнейшие сосудистые растения - псилофиты, которые процветали на суше с силура по конец девона, положили не только конец безраздельному господству водорослей на нашей планете. Они открыли эру отложения совершенно иного по своему химическому составу растительного материала.
Похоже, что тогда ни микробы, ни животные переваривать клетчатку не очень-то умели. В начале девона на суше возникли и другие сосудистые растения - плауны, хвощи, папоротники, мхи. Из их остатков в конце девона образовались первые мощные залежи торфа, который постепенно превратился в каменный уголь. Это тоже символизировало начало нового важного этапа в эволюции геохимического состава биосферы: массовое образование целлюлозы и лигнина, сложных органических молекул, нерастворимых, с трудом разлагаемых и абиотическими и биологическими факторами.
Низшие, древнейшие почтенные животные питались и питаются главным образом грибами и водорослями, а целлюлозу могут разлагать в своих кишечниках только с помощью микроорганизмов. Так же поступают и термиты, для которых целлюлоза служит основной пищей, а вернее, пищей для содержащихся в их кишечниках микробов. Такие трофические цепи, экологические отношения сохранялись на суше многие миллионы лет.