Помимо закона возврата, Либих предложил еще и "закон минимума". В соответствии с ним почва обязывалась вести себя в точности как банковский механизм, давая пропорциональный прирост урожая на каждую новую долю внесенного удобрения. Вносить же в землю рекомендовалось те элементы, которые были в ней в минимуме (не хватает калия - вноси калий, нет магния - давай магний!). Внешне все было абсолютно логично. Но в земледелии много раз логика как до, так и после Либиха подводила ученых.
Уже самые первые последователи Либиха принялись строить диаграммы и выводить математические зависимости. Соотношения между вносимыми химикалиями и урожаем выражались, к полному удовольствию научной общественности, в виде формул. Поддерживалась иллюзия, что земледелие становится точной и математизированной наукой.
К огорчению увлеченных исследователей, первое же следствие математизации обратилось против агрохимии Либиха. Вместо прямой линии на всех диаграммах "удобрение - урожай" получалась весьма хитроумная кривая - сигмоид. Вначале прибавление урожая с внесением питательных веществ было даже больше, чем предсказывала теория, затем некоторое время устанавливалось пропорциональное соотношение, вслед за тем кривая начинала все больше и больше уклоняться от предписанного ей направления. Она вывозила явно "не туда": урожай прекращал увеличиваться, а затем и вовсе падал до прежнего минимума.
Так был установлен факт "кризиса роста": растение отказывалось расти в перенасыщенной удобрениями среде, оно "задыхалось" от пищи, земля не платила по чекам. Сигмоид позволил в свое время Мальтусу подвести теоретический базис под свою печально нашумевшую теорию перенаселения. В самом деле, после повального увлечения химией, укрепившего всеобщую веру в ее всемогущество, разочарование было прямо-таки жестоким.
Эффективность удобрений оказалась ограниченной! Урожаи не могли быть увеличены выше некоторого порога! Оставалось либо согласиться с тем, что человечество ожидает голодная смерть, либо... признать ограниченность теории минерального питания. Конечно, ученые, настроенные несколько оптимистичнее, чем Либих, предпочли сделать второе. Кстати, к этому времени (конец XIX века) были накоплены некоторые дополнительные сведения относительно почвы и питания растений, которые представили минеральную теорию в несколько ином свете.
Прежде всего рухнуло представление о почве как мертвом теле, продукте эрозии безжизненных скал, и в то же время было установлено, что земля - материк обитаемый.
Еще Дарвин писал: "Плуг принадлежит к числу древнейших и имеющих наибольшее значение изобретений человека, но еще задолго до его изобретения почва правильно обрабатывалась червями".
Что почва населена, знали давно. Но лишь к концу XIX века, главным образом благодаря трудам известного русского микробиолога С. Н. Виноградского, удосужились начать "перепись ее населения". Эта перепись не закончена и по настоящее время. Надежные данные получены только для части обитателей "темного царства". Биологи неожиданно оказались в положении, значительно более тяжком, чем астрономы. Те уже давно успели издать звездные каталоги, пересчитать биллионы звезд, шаровых созвездий, открыть новые объекты типа радиогалактик и загадочных квазаров. С подобной исчерпывающей точностью население пахотного горизонта еще не пересчитано, и знаем мы о нем во многом меньше, чем об удаленных на миллионы световых лет пульсарах. А между тем деятельность всей этой огромной армии почвенных организмов для нас вовсе не безразлична.
Планета, съеденная червями
Известно, например, что вся поверхность нашей планеты покрыта тонким слоем почвы, которая уже не один раз побывала в желудке у червя. Любая частица первичного органического вещества последовательно проходит через кишечник огромного количества животных, прежде чем превратится в устойчивый перегной.
Да и не мудрено! Вот, например, сколько мелких животных обнаружили в почвах опытной станции в Ротамстеде англичане (в миллионах штук на 1 гектар в слое толщиной 22,5 сантиметра):
Наличие мелких животных в почвах опытной станции в Ротамстеде
Представители фауны
На поле под бессменной культурой пшеницы
На лугу
удобренном
неудобренном
Насекомые:
ногохвостики
101,5
70,7
135,2
личинки жуков
14,7
2,3
5,7
личинки мух
48,5
9,5
27,8
прочие
8,5
1,3
27,5
Многоножки
11,3
4,5
4,5
Паукообразные:
клещи
16,3
4,7
7,2
пауки
0,41
0,17
3,0
Мокрицы
0,1
0,12
Слизняки и улитки
0,1
0,02
Кольчатые черви
6,5
1,5
21,0
Нематоды
3,7
0,5
19,0
Всего
211,5
95,5
251,2
Общий вес перечисленных представителей почвенной фауны колеблется между 1,5 и 4 тоннами на каждом гектаре, что в несколько раз больше веса травоядных животных, приходящихся на ту же поверхность! И это без учета мышей, сусликов, кротов и прочих активно уничтожаемых вредителей, поголовье которых быстро сокращается. И без почвенной флоры. А последняя еще более многообразна. Одних бактерий в каждом кубическом сантиметре земли насчитывается несколько миллионов. Вместе с актиномицетами, водорослями и протозоа живые организмы этой группы дают еще те же 1,5-4 тонны на гектар. В общей сложности живая часть почвы (почвенная фауна и флора) составляет около одного процента пашни. Это очень много! Почва - куда более перенаселенный материк, чем, скажем, гидросфера Земли; материк без солнца и света, темный мир, где властвуют свои законы и идет такая же борьба за существование, как и на поверхности.
Биосфера червей, нематодов и почвенных бактерий образует замкнутый равновесный мир. Основная часть жизни обитателей этого материка тратится на разложение трупов растений и животных, в процессе которого они получают пищу и черпают энергию.
Конечным продуктом разложения органических веществ являются окислы элементов - вода, углекислота, азотная и серная кислоты. Все они необходимы для питания растений, и над их получением трудится колоссальная армия почвенных организмов.
Одним из важнейших продуктов, производимых этим огромным химическим комбинатом, являются растворимые нитраты, обеспечивающие растения азотом. Темпы их производства зависят от двух основных видов азотофиксирующих бактерий. Первые - аэробные - работают при наличии в почве кислорода. Вторые - анаэробные - напротив, его не переносят. Обрабатывая почву, мы прежде всего обеспечиваем более свободный доступ воздуха в нее и, следовательно, улучшаем бытовые условия аэробных бактерий. Таким образом, с точки зрения микробиологии почв, ее обработка сводится к регулированию творческих условий для бактерий.
Увлечение микробиологией быстро повело за собой появление на свет очередной теории биологического истощения почв. В значительной мере это была реакция на минеральную теорию, так много обещавшую и не исполнившую обещаний. Ведь если единственным производителем и поставщиком пищи для растений являются микробы, то лишь избыток или недостаток их определяет плодородие земли. Ну и, конечно, совершенно естественным для категоричного в своих мнениях человека было разделить подземных обитателей так же, как и наземных, на полезные и вредные виды. А раз так, рассуждали сторонники биологической теории, то следует вводить в почву ("инокулировать") хорошие микробы и стерилизовать ее от плохих. И конечно, необходимо больше вносить в почву навоза, именно навоза, а не минеральных удобрений, которые не столь охотно перерабатываются бактериями и которые способны даже отравить жителей подземного мира.